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THERMAL STRESSES IN CHEMICAILY HARDENING EIASTIC MEDIA
WITH APPIICATION TO THE MOLDING PROCESS

by

Myron Levitsky and Bernard W. Shaffer

Abstract

| A method has been formulated for the determination of thermal
stresses in materials which harden in the presence of an exothermic
chemical reaction. Hardening is described as the transformation of the
material from an inviscid liquid-like state into an elastic solid, where
intermediate states consist of a mixture of the two, in a ratio which is
determined by the degree of chemical reaction. Constitutive equations
for the transitional mixture are derived from the strain energy of its
component parts in a manner consistent with the treatment of a homogenecus
elastic material whose properties vary with time.

The method is illustrated in terms of an infinite slab cast between
two rigid mold surfaces. It is found that the stress component normal to
the slab surfaces vanishes in the residual state, so that removal of the
slab from the mold leaves the remaining residual stress unchanged. On the
other hand, the residual stress component parallel to the slab surfaces does
not vanisha— Tts distribution is described as a function of the parameters

of the hardening process.

Introduction

The fabrication of concrete structures, the forming of some plastics,
and other similar processes of practical interest require the introduction
of liquid-like material into a mold where it solidifies during a chemical
reaction which generates heat. The liberation of heat during this exothermic

reaction and its subsequent dissipation to the surroundings induces transient

1.



temperature gradients within the hardening material, which in turn give
rise to a system of time dependent thermal stresses. Upon completion of
the chemical reaction, the temperature of the material eventually returns
to a uniform ambient state, in which stresses can remain locked into the
material. These are called residual thermal stresses.

To the best of our knowledge, né analytic treatment of the development
of residual thermal stresses in chemically hardening media has appeared in
the literature. Single aspects éf the problem, such as thermal stresses due
to internal heat generation, transient thermoelastic phenomena, and the vari-
ation of material properties with temperature have been considered. Related

¥*
1
information will be found, for example, in the work of Wengﬁlj ’ Shaufferr2 ’

r
51, Muki and Sternbergﬁhq, and lee, Rogers, and Woo‘sj. There

Lee and Rogers[
are, however, two basic differences between the problem presently under dis-
cussion and those treated in the aforementioned references. Here, the tem-
perature distribution results from heat generated within the material by
chemical reaction rather than by passive cooling of the medium from an
elevated temperature. In addition, the variation of materisl properties

is taken explicitly to be a function of time through dependence of the
process upon the degree of hardening, and related to temperature only by
virtue of the fact that the latter is also a function of time.

In order to formulate a practical approach to what is evidently a
complex problem, consideration will first be given to the derivation of
suitable constitutive equations for the material during the hardening process.
Toward this end, it is convenient to assume a model for the reacting material
which can be analyzed in a relatively simple way, yet which contains those

characteristics of the material which are significant to the problem. The

%
Superscript numbers in brackets refer to References listed in the
Bibliography.
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initial state of the reactants is taken to be that of an inviscid liquid,
which changes in the course of the hardening reaction into a homogeneous
elastic solid. During the hardening process, the material is postulated
to be a uniform amorphous mixture of two components, one of which is the
unreacted phase and the other is the fully reacted product, combined in a
ratio which varies according to the degree of chemical reaction. The possi-
bility of any intermediate product is thereby ignored. As an additional
simplification,ythe density of the reactants and products are taken to be
equal,; so that the degree of reaction is the same whether measured on a
volumetric or gravimetric basis.

The structure of the reacting material while hardening is unknown
so that the stress-strain law of the composite cannot be developed in terms
of the structural description. Instead, it is approached from a mathematical
point of view that is consistent with the existence of a strain energy density
function for the hardening mixture.  This problem is in several respects

related to the formulation of a stress-strain law for porous media, which

1

has been discussed, among other, by Biot[6’7“. The formulation of elastic
/

and thermoelastic constitutive equations for composite media has also been

[

8,9] and Rosen and Hasin[io’ll].

studied recently by Green and Naghdl
Determination of the residual thermal stresses occurring in the
hardening process requires & prior knowledge of the thermal history of the
material. Expressions for the temperature distribution produced by the
chemical generation of heat, in an analytic form suitable for use here
have been discussed by Levitsky and Shafferflzje Following the derivation
of the desired constitutive equations, the thermal and elastic aspects will
be combined in the solution of residual thermal stresses which arise during

the casting of a wall between infinite mold surfaces, a process of prac-

tical interest.



Micromechanics of the Reacting Mixture

In the model of the hardening material under discussion, each
component of the mixture behaves in accordance with a well defined con-
stitutive equation which relates the microstress to the microstrain in
thaf component. Hence at the initial stage and later at the fully-
hardened stage, the material properties of the mixture correspond to one
or the other of the components. At an intermediate stage of hardening,
however, the constitutive equations must take into account the varying
composition of the material and are required to relate the nominal stress
to the nominal strain of a two-component material. The nominal stress is
understood to represent the force per unit area on a differential element

“which encloses both components of the mixture, whereas the nominal strain
is a suitably defined quantity which measures the deformation of the afore-
mentioned differential element.

It is convenient in order to develop the constitutive equations
applicable to the intermediate stage of hardening to employ a non-
conventional double subscript notation to identify components of stress and
strain., According to the suggested'double subscript notation, the first
index assigned to a stress or strain component will be ¢, o, or 1,
intended to ‘designate the composite, component o, or component 1. Thus,
when the first index is ¢, it indicates nominal values of stress and
strain, while © and 1 refer to microstresses and microstrains of com-~
ponents O and 1 respectively. The second index is a number from
1 to 6 which identifies the six components of stress or strain in accord-
ance with the convention that l=xx, 2=yy, 3 = 22, Wb =1xy, 5= yz,
and 6 = xz.

The volume fraction occupied by component © in the mixture is

designated N , while the volume fraction of component 1 is (1 - N) .
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It is assumed in describing the chemical process, that N also corresponds
to the degree of the chemical reaction. Thus component © represents the
fully hardened material, and properties designated by the subscript © are
those for the fully hardened material.

Each component of the mixture is assumed to be elastic and obey
Hooke's law, so that a strain energy density function may be associated
with each component. Since the strain energy density is an intensive
scalar property, and there is assumed to be no energy of interaction, the
strain energy density of the mixture may be written in terms of the strain
energy density of each component, per unit volume of the mixture, by the

relation

w, = M+ (1-N)n, (1)

According to the definition of the strain energy density[151

on, 6 om_ Oe . 6 oy Oe,.
o=t N P g (M) ¢og )
ci J=1 ""0J "Tei J=1 715 “el

I B

6 aeo. 6 O€.. .
o, =N % o s+ (1N 5 o, N (3)
ci 4oy 0J deyy je1 W Oy
The stress components o ., and o can be expressed in terms of ¢

oj 1j oj
and elj when the stress-strain laws for the two components are known.
If, however, Equation (3) is to lead to a stress-strain law for the mixture
as a function of its nominal stress and strain components, then the eoj
and glj must be specified as functions of the €0t ° Ordinarily, such a

relation can be obtained from a knowledge of the microstructure of the

material, but a descriptian of the substructure is assumed to be not available.
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Instead, let us consider the nature of the relations of the micro-
strains eoj and €.. to the nominal strains ecj , and the nature of

13

the relations of microstresses Uoj and Glj to the nominal stresses

ch » Wwhich are consistent with the derivation of a stress-strain law for
the composite material from the strain energy densities of the components.
As in the case of every elastic material, if there is to be a nominal
stress-strain law for the mixture of the form Ouy = auc/aeci » then one
must be able tovconstruct a complementary strain energy density E& from
the strain energy function “c by means of a Legendre Transformation[l5’1hﬂ,

so that

(&)

It then follows that a strain-stress law is derivable from the complementary
strain energy density in the form €y = aiyaoci . This formulation implicitly
assumes that all dependent variables €. Bare functions of the six stress
components cci s 1= 1,eeee6, taken as independent variables.

As a consequence of Equations (1) and (4), the complementary strain

energy density of the mixture may be written

6

w, = - N - (l—N):rl + i§1 0 i€ei (5)

When the legendre Transformation is applied separately to the strain energy

density of each component, the result may be expressed in the form

6
- =R~ T 0_.€, , 6)
o o . oi oi
1=1
and _ 6
-y =T, - .2 09:€93 (7)
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Substitution of Equations (6) and (7) into Equation (5) leads to

6

Te = N“ + (1-N )ﬂ o (UCl ei ~ N96i%01 ~ (l_N)Ulieli] (6)

Therefore, it is found by formal application of the rules of partial

differentiation that

Bnc 6 Bno bcoi (2.0 6 Bnl acli 6 ( Beci 011
=N ¢ . . + (1-N z + v g . + €
90 4o1 9% g jop 9093 90, T 4T Liei So T et Jo
6 3 . 30 6 d. . (9)
Ny o, <2a4e f\-(lN)r i Ay
401 - oi dag oi ac i-J; 1i §cck €1 5 0 e

Each component of the mixture is a homogeneous elastic medium and its

complementary strain energy density is well defined so that éﬁo/aaoi =€

and biﬁ/aoli = €,; » Hence the first and sixth, and second and eighth terms
in Equation (9) cancel in pairs. Also note that the 0.y are the independent

stress variables, so that Bcci/aock = §,, Where § is the Kronecker delta,

ik ik
defined as zero when i # k and uvnity when i = k . Thus Equation (9) re-

duces to
BFC 6 aeci aeoi 36111
do = €ck + .2 Uci dc - NUoi Y] - (l-N)Oli do B (10)
ck i=1 ck ck ck

If the composite material behaves as an elastic Hookean medium,

Bnc/aock = € » SO that

r de aeoi aeli q
0= ? o g"" No, 55— - (1-N)og; 53— (11)
i=1 ck ck



Any assumption relating the microstrains to the nominal strain,
or the microstresses to the nominal stress must be consistent with the
preceding relation. This relation admits, among others, two simple
formulations to be listed as (a) and (b):

(a) Each component of microstrain is equal to the corresponding
nominal strain, in accordance with the equality €a; = €05 = €73 °

Equation (11) then becomes

6 aeci
R L R L (1‘N)°1ij] o =9 (22)
i=1 ck

Assumption (a) is associated with the physical implication that both
components are constrained by the microstructure to deform equally,

and that there is no relative motion between them. Since k in Equation
(12) is arbitrary, and at least one of the differential quotients

aei/aak must be non-vanishing for any k in order to have a stress-strain

law, it is apparent that Equation (12) will be satisfied only if

o, = No, + (1—N)c1i (13)

In a homogeneous, random mixture of two components, the volume
fractions N and (l—N) also represent fractional area occupied by each
component in an exposed cut taken through the ccmposite£7j, From this
point of view, Equation (13) together with assumption (a) indicates a
corollary interpretation to the effect that the nominal stress of the
composite is equal to the sum of the area-weighted microstresses
in each of the components of the ccmPosite,

(b) Components of the microstress are equal to each other and to
the associated nominal stress in accordance with the eguality Op; = 0py = O

1 ol

Equation (11) then becomes

8.

i °



6 _Je . Jde 3
z [ Uc - N 5——— - (1N 0, = 0 (11)
i=1 C

ck‘ l
Since the stress components o, are independent variables and each may
be assigned a value arbitrarily, the preceding equation fequires each
coefficient of the o to vanish independently, or

%Fe - Ne, - (1-N)ey, | =0 (15)

k ci

With k arbitrary, the terms in parenthesis [eci - Ne , - (l—N)eli] cannot
be a function of % and may at most be equal to a constant. If the mixture
is to be strain free when each of the components is strain free, the constant

must be zero, and it follows that

€, = Ne, + (1-N)e,, (16)

It is easy to visualize such a relation between strains if the composite
consisted of sheets or lamina of the component materials occupying the
volume fractions specified, and the strains related by Equation (16) were
normal to the lamina.

In order for the stress-strain law to be derivable from the com-
plementary strain energy density, assumptions (a) and (b) were made regarding
the relation of nominal strein to microstrain, and nominal stress to micro-
stress respectively. These led as an immediate consequence of Equation (12)
to corollary restrictions on the stresses in (a), and as a consequence of
Equation (16) to the restrictions on the strains in (b).

For the formulation to be self-consistent, the same conditions must
arise in the derivation of a stress-strain law from the composite strain
energy density function. If according to assumption (a), ecj = eoj = elj .

then aeoj/aeci = belj/beci = aij and Equation (3) shows that

9.



Ouq = No_, + (1—N)cli (13)

In the case of assumption (b), where Ous = %5 = 913 Equation (3)

leads to the relation

6 Beo. 6 ael.
o, =N I o, —J-ae F 4 (1-N) % o ’Jae ‘ (17)
j=1 ei j=1 ci

Equation (17) will be satisfied identically if

€oi = Mgy + (-N)eyy (16)

and aeoj/aeci = 0 and aelj/aeci =0 when i# j , because the former

condition implies

aeci aeii
—— =N+ (1-m) 55— (18)
oi oi
aeci aeoi
Ss—=Ng5—+ (1-w) (19)
1i 1i

The latter condition is necessary because the strain components act independ-

ently, To show that the preceding conditions do satisfy the Equation (17),

make note of the fact that even though summation on J is required only j =1

will survive because of the independence of strain components, so that

N 1-N

oy =0 se, S (20)
N + (1-N) S (1-N) + N S
oi 1i

is obtained. When the term within the braces is placed aver 2 common
denominator, it is seen to be equal to unity, so that the identity does
hold. Thus the assumed relation of the microstrains to the nominal strains

of case (a), and microstresses to nominal stresses of case (b) is consistent

10.



with the derivation of a stress-strain law from a strain energy density
function taken as the sum over the individual strain energies, and treating

the composite as an elastic medium. Furthermore, if Equation (11) is satisfied,
the complementary strain energy density of the composite material is the sum,
weighted by volume fractions, of the complementary strain energy densities

of the component materials. None of the preceding is in any way restricted

by the stress-strain law for the component materials so long as each is

derivable from a strain energy density function.

Relation of Stress Rates, Strain Rates, and Composition

When hardening occurs in the presence of a chemical reaction, the
microstructure of the mixture changes continuously with time, so that under
the influence of loads, the constitutive equations must relate the stress
rate and the strain rate with material properties prescribed as functions
of time. Such relations may be formulated in the following manner. First,
differentiate the strain energy density of the composite with respect to
€ multiply the result by the corresponding strain rate component éi s
and sum over all components of the strain rate. The superscript dot (')
signifies a partial derivative with respect to time. Then observe from the
chain rule of partial differentiation that }?:(Bn/aei)éi =% . Finally,

i
differentiation of the last expression with respect to € shows that

6 ,3\2
d * J fom . om\
soies(S) == 2 (994 (22)
i i i=1 oe

i

The partial derivatives beﬂ/aei of Equation (21) are the instantaneous
elastic coefficients of the material. Consequently, the stress-rate strain-
rate equations may be obtained from the customary stress-strain law for an

elastic material by replacing stresses and strains with their time derivatives,

11.



and by interpreting the elastic coefficients as functions of time and position.
In order to apply the preceding results to a material that is
reacting chemically and simultaneously hardening, let us replace the material
by a model consisting of a two component mixture. The first component
occupies the volume fraction N and is the elastic end product; the second
component occupies the remaining volume fraction (1-N) and is the liguid-like
unreacted material. For simplicity, the constitutive relations will initially
be formulated as relations between stress and strain. Subsequently, these
will be generalized as rate equations which include the effect of the transient
temperature distribution.
The first component of the mixture consisting of the elastic end

product obeys Hooke's law[15sl5]

o) = v
%1 = (lﬂ+)(l—240)l‘(1ﬂio)€ol * uo(€02 ¥ e05)]

(lﬂio§(l-aio)‘:(lﬂio)€02 * uo(eoi+ €°3)] )

Q
!

o
= (lﬂio)(l-aJo)‘:(liJO)GOB +Ll'o(Eof‘ e02)]
O'O)-_l- = GQEO)* 2 0'05 = Goeos 3 006 = GO€O6

where E is the modulus of elasticity, |4 1is Poisson's ratio and %, is
the shear modulus. The coefficient Eo/(l-aJo) is equal to three times
the bulk modulus Ko s 8o that the equations for the normal stresses can

be represented by the relations

3K
)
%01 = lﬁJo‘:(lﬂlo)eol + H0(602+€o )]
3K
T2 = lﬁjo[:(lﬂJo)€o2 * uo(601+603)1 (23)

3K,
93 = ML r (1—\10)603 + uo(eol"'eoE)__.}

12,



It is easily confirmed that the previous stress-strain equations are

derivable from a strain energy density function of the form

3K 14
(o) ie) 2 2
o~ T {( 2 )(eoi+ ) S (e 01° 0202 93" ol€o3)

(2k)
+ E° (e2 +e2 +e2 )
HZlﬂJos ok’ “05 ob

The secénd canponent of the mixture is a liquid-like material with
zero shear modulus. The corresponding strain energy density function can
be obtained from Equation (24) by replacing the subscript o with the
subscript 1 , and noting that Poisson's Ratio may be expressed as
(3k - 26)/6K + 2G) . Thus with G = O , the strain energy density for

the liquid-like component may be written

X

1 2
T o= (€11+€12+€13) (25)

Substitution of Equations (24) and (25) into Equation (11) shows that the

composite strain energy density is expressible as

( I+€oé+€ ) +u (601§02+602605+601§05)J

(26)
EN

H(-""_T (e u}e +eo6) + (l-N) (e +€13)2

The nominal stress components may be computed from the composite
strain energy density function by taking partial derivative with respect

to the appropriate nominal strain component, so that

13.



01 g

6 Bn Be

SE"Q'+ (1-n) z 5——— 5~;§

According to the constitutive relation for the first component,

ano
Seol =911 + Uy {( 144 )e ol +$Jo(€oe + 6035}
on 3K
o e
55;; =0, =7 T {(1140)602 +u (e + eoBi}
3K
aﬂo =0, = ————EL-{(114 e o +u (e 4+ ¢ 51
5eo§ T T3 T 1.+|Jo : 0’703 MolCo1 o2/,

while for the second component,

aﬂl
%, Ky(eqpteygreys) s
Therefore
o ol o(e O5i}

{(lt—to)eﬁ o(eo 02 )}

5e03
r] * (1'N)K1[
cl

j = 132’5

%(lﬂlo)e oMo (€0t 03)}

€, .+€

7 9 (e
11+€10%€ 15 ] S, e

(27)

(28)

(29)

+€ +e13)

(30)

(The shear terms of Equation (30) have been omitted in order to shorten

the expression.

They subsequently drop out.)

Throughout the process the chemically reacting material remains a

homogeneous mixture of two components, with a time dependent composition.

There is no separation of the components, nor is there any flow of the unreacted

material with respect to the solidified component.

Thus it seems reasonable

to assume that not only are the strains in the reacted and unreacted compon-

1k,



ents equal to each other, but that they are also equal to the nominal
strain of the mixture. In effect, the unreacted liquid-like component

is locked into the matrix of the solidified part of the composite
material. If it is assumed further that the components of strain in
different directions act independently of each other, we are led to the
set of conditions which were described as case (a) of the previous section,
wherein € . =€, =¢€,, , fromwhich it follows that Be-:oi/aec’j =0 and
3¢,/ 4 = O for i # 3 . Equation (30) with i = 1,2,5 then may be

written
% 'o)ecf“o(ece"eca)] * (MK (e yre e 5)
M M€ 3)] + (W), (e re e s) (33)
0oz = r(l-u )e FH (e 2)] + (l—N)K1(€c1+€c2+€c3)

In the calculations to follow, it is convenient to assume that the
bulk moduli of the unreacted and fully solidified materials are equal, and

thus Kc = Ko =K Furthermore, Poisson's Ratio b, can be expressed as

l L
(3 - 2GO)/(6K + 2GO) and eliminated from Equation (33) in favor of the shear
modulus. With the preceding substitutions, Equation (35) describes the com-
posite material with a fixed composition. To incorporate the effect of the

hardening process where N is a function of time, Equation (33) must be

represented as a rate equation written

;cl = ;XX - [K + % GON(t)]éxx +lx - -‘53 GON(t)](éyy+ézz)
b= o =[x+ 2+ [k - 2 e (6], ¢, ) (34)
6c3 = Szz =[K+ %GN(’G) € z+ﬁ: - %—G N(t)](e +eyy)

15.



It is pertinent to observe that the preceding constitutive relations for
the mixture are stated wholly in terms of nominal variables.,

In order to complete the formulation of the stress-strain laws for
the composite material, a specification for the shear components is necessary.
Since the fluid-like second component has zero shear modulus, it does not
sustain any shearing stress and hence contributes nothing to the shear
terms of the composite strain energy density. Therefore with Go = E°/2(1£10) ?

Equation (26) can be rewritten

NG
e} 2
‘Kc = ——-—2 E€O)+ + €

2.

o5 * €i6] + normal terms (262)

The shear stress components may then be determined by the relation

on I
c o . .
ci J ci
Under the assumption that € , =€ . = €5 a'soj/ée(::.L = aij and there-
fore
O'Ci = NGOGOi s i= h"536 (56)

In accordance with the concepts associated with Equation (21), the corres-

ponding rate equations may be written

. = N(t)Goéi , i=Lk5,6 (37)

Cli

With the microstrains and nominal strains equal to each other, the stress
rate - strain rate law for the shear components of the composite material
are given by Equation (37).

The effect of temperature upon the stress-strain equations could

have been included, ab initio, in the specification of the strain energy

16.



density, but was omitted in the interest of clarity and conciseness. It is
now introduced by noting that in the presence of a temperature change T ,
the total normal component of strain €i consists of the elastic strain
e, plus the thermal strain o'T , where Q' 1is the coefficient of
thermal expansion. In the situation currently under consideration, the
material property o' is assumed to be equal for both components of the

mixture. In terms of strain rates, the foregoing concept may be expressed

e.i = éi +a'T (38)

Replacement of the total strain rate components of Equations (34) by their

equivalent as prescribed by Equation (38) leads to the relations

T

o, = [K + %”- GON(t)]éxx + [x - GON(t)](éyy +e ) -3K'T

e M) (€, + ¢, ) -3t (39)

Wi

c'}yy = [K + -;ﬁ GON(t)]e':yy + [K - .

'y )_‘_ s 2 ® e .
0,, = [x t3 GON(t)]ezz + rx -5 Gom(t):‘(c—:xx + eyy) - 3K'T

Temperature does not enter directly into the formulation of the constitutive
equations for the shear components, and therefore the set of Equations (37)
remains unchanged.

An alternate form for Equations (39), written in terms of Poisson’s
Ratio which is a function of time, is algebraically useful. With

3K - 2G0N(t)
u(t) = gz 26 _N(t)

(ko)

Equations (39) can be rewritten to read

17.



=y | (W +uE + &) - (uat]

L]

6= Ty | (e +u + &) - (1)a't] (42)

L= Tyl e, ru g, v e ) - (1) |

In this form, the stress rate - strain rate law for the composite material
is comparable with fhe stress-strain law for an isotropic, homogeneous
elastic material, where the stresses and strains have been replaced by their
partial derivatives with respect to time, the bulk modulus is constant,

while Poisson's Ratio is a function of time.

‘Casting of an Infinite Slab

Let us consider the fabricational process by which an infinite slab
of uniform thickness is cast between two infinitely rigid parallel planes.
In the analysis of such a problem all spatially dependent quantities
are functions of the thickness coordinate. As a matter of convenience,
this coordinate will be made dimensionless, by normalizing it with respect
to the wall thickness.

The thermal problem associated with the aforementioned fabricational
process, and its solution have been discussed previcuslyElzw, so that only
a brief summary of results are required here. It was shown that when the
rate at which a material hardens is assumed to be a function of the con-
centration of the reactants, and independent of variation in the temperature,

the degree of reaction N can be written

-v2
N=1-e" " (k2)

The dimensionless time 1 is measured by the Fourier Number Mt/l? s Where

K is the thermal diffusivity of the wall material, t is physical time

18.



and L is the physical thickness of the wall. The quantity v 2 is
here called the reaction rate parameter, and is a dimensionless measure
of the speed of hardening. It is defined in terms of physically significant
quantities by the equality -V 2 = QoLg/HH s Wwhere Q,O is the initial rate
of heat generation, and H is the volumetric heat of reaction.

Let us assume the initial temperature of the material in the mold
is To and that not only are the mold surfaces initially at To s but
they are maintained at the same temperature throughout solidification.
During hardening heat is liberated as a result of an exothermic chemical
reaction and the material in the wall undergoes a transient temperature

distribution, which may be expressed in the form

o VT _-(m)PT

6(x,T) = 4B = &

5 57 sinmrx 3 n = 1,3,5 ... (43)
n nx[(nx)® -]

where 6 is the dimensionless temperature RT/E , E 1is the activation
energy of the chemical reaction, and R is the universal gas constant.
The coefficient B is equal to V °(R/E)(H/pc) in which @ is the material
density, and c¢ is the specific heat. The wall thickness has been nor-
malized to unity so that the variable x here denotes the dimensionless
length x'/L,, x' being the physical distance.

Stresses, strains, displacements and their partial derivatives
with respect to time are solely functions of the normalized thickness
coordinate x . Thus the relations between strain rates and displacement

rates reduce to

du _ _

€ox = S ? Ey_y——O R EZZ-O
(Lb)

& _ _

xy ox ? vz T X ? éyz =0
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while the equilibrium equations show that

o 30 3
_53—{_=O , —&X=O s —-5-}-(-—=0 (45)
The elastic coefficients of the solidifying material are a
function of the fraction of reacted and unreacted components in the
material. Since the bulk modulus of each component was taken to be the
same, the bulk modulus remains constant during solidification; Poisson's
Ratio, on the other hand, is determined by the composition of the mixture
and is hence a function of time, as prescribed b& Equation ého). It is
furthermore convenient to define a dimensionless coefficient of thermal
expansion @ equal to O'E/R .
With the substitution of strain rates from-Equation (44), and the
replacement of T and ' by their dimensionless counterparts, the
constitutive equations for the normal components of stress and strain

heretofore given by Equations (41) can be written

o, = 3K (%&)g;ﬁ - océ] (46)
c}yy = 3K (i‘:—u—)% - aé] (47)
0y = B[S - 0B (48)

while Equations (37) for the shear stress components become

@ °

Oy = G gﬁ , éxz =G gg y Oy = 0 (49)

In view of Equations (45), as applied to Equation (46) it can be seen

that
SLEDS -] -0 0
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The mold surfaces are immovable, and therefore the displacement
components vanish at x =0 and x = 1 . The material is stress-free
when solidification starts. and the displacement components are measured
from the stress-free state. With the foregoing boundary and initial
conditions, the solution for the displacement u(x,t) may be obtained

from Equation (50) by elementary integrations to be
< 1 X . 1. ¥
u(x,t) = aj (—Eij fdx' - x j edx':ldt (51)
s el o

It is clear from the second and third of the equilibrium equations (45)
and Equations (49), that oOv/ox = O and Ow/dx = O . Since the displace-
ment components v and w are independent of the coordinates y and 2z ,
the preceding results together with the initial and boundary conditions

on v and w show that they must be identically zero everywhere. Con-
sequently, in view of Equation (49), the two remaining shear stress
components ny and O must also vanish. The only non-vanishing
displacement component is in the x direction, and only normal components
of stress remain.

Differentiation of Equation (51) with respect to x and <
followed by its substitution into Equation (46) shows that the stress rate
. j 1.

O = 3K . fdx (52)
The material is initially stress free, so that integration of the preceding
relation with respect to time, followed by the substitution of 6 from

Equation (43) gives the result

1 o 9% (m)T
Juaze -~ ()

= 3K
° o n nn[(nn)QJve]

o gin mmxdx , n = 1,3,5... (53)
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Integration of the previous expression then yields

® —Vet;e=(nn)2t

= -24okB ¢ £ ,
%xx o (o) 2] () 2V

n=1,35.... (54)

When the coefficient B is replaced by its equivalent \?Q(R/E)(Hjbc) s

the stress normal to the mold surfaces takes the form

° VT _(an)%x

g = -ELI-KC!'(("I-L) by e - & ; n=1,3,5.... (55)
o 1 (w)?[(3H% - 1)

There is no preferred orientation of the y and 2z axes within

the wall, so that Equations (47) and (48) show ny and o, to be

equal as expected. With the designation oyy =0,, = cp s it is seen
from Equations (47) and (51) that
5 = -3Ka[(ﬂi)é + jlédx] (56)
j 1-p I

When the temperature distribution of Equation (43) is introduced into

Equation (56), the stress rate &p is obtained in the form

2 2
. ® 2 VT 2 -(ne)“T
5 = 1okop L& - (mt)%e 1-a

P n () F ()2 -2 i

nr sin nmx + {%ﬁ] s =1,3,5

(57)

It contains Poisson's Ratio p , which may be expressed as a function

of the dimensionless time T by combining Equations (40) and (L42),
2
-¥°T
3K - 2G°(l - e )

- 8
_vgt) (58)

n(t) =
6K + 260(1 - e

When pn is eliminated from Equation (57) the surviving expression shows

that the rate of change of the parallel stress component can be expressed

e2.



in terms of the bulk modulus K , and the shear modulus of the

fully hardened material Go s, hamely

® 2 - v2t )P ()%

3K+(l"e-v2t)Go[3nﬂ sin nnx-2]

2UKoB = , n=1,3,5,...
> n (o) [ 2 2] 3K + uGO(l )
(59)
Further simplification can result by defining
An = 3mr sin nmx - 2 (60)
and
b G,
L e Ty (61)
o)
so that Equation (59) may be written
2 vt
® (R ~VT 2(mr) 3K+A G_-A G e g
= et | e ol B
n - (m)® [nrr)
(62)
Multiplication of the factors under the summation sign shows that
o 2
oo 1 {V2(3K+A G )e-v2t-(rm)2(3K+A G )e~ ()T
O~ 3K+’+Go N 5 5 o _ver n’o n’o
(o) [(nn)"=¥7)(1- e )
(63)
o, . ~2vPr_, 2 - [(nm)c+V]T
-V°A G e +(nx) A G.e } , n=1,3,5,...

To obtain the stress component op from the previous expression,
each of the four series is integrated term by term with respect to the
dimensionless time between limitg of O and T . No arbitrary function
of integration will appear because the material is assumed to be initially

stress free, so that
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. 2bko 1
P3Gy ()P () 2y

[3K(v211=(nn)212)+AnGo [v2(11—13)-(m)2(12-1h) ]]

n= 1,3,5’--0-
(6k4)
where
T . T .-
I(t)_revztd'c. _Ie(mt)tdt
1t =] o, 3 L= V2e
© 1-ne” © 1-me”
(65)
T .ovPT T (am)2+¥lT
P
° v ° VT
1-re : 1-ne

Equations (64) and (65) define the distribution of the stress component
parallel to the mold surface as a function of time. Unfortunately, it
does not appear that the integrals of Equation (65) can be evaluated
for arbitrary time T , other than numerically. In the limit as time

becomes infinitely large, however, the integrals may be represented

as a series whose general form is given by[;6]
-] -qx I m
J-—i——gﬁ_‘—r—;=z EE_’_—m'; s m=0,1,2,... (66)
ol -~ pe m

The solution associated with an infinitely large period of time is
of particular interest because it then corresponds to the residual
stress distribution. Hence let us evaluate Equations (65) with the
aid of Equation (66) and introduce the results into Equation (64) to

find the residual stress

- -]

o 2o L a6 (A0 -3 pn(ron)er )
“p” 3x+bG o (m)e[(m)z_ve]l_ n%(7q ) n:“_ n(1-n - ()2 2 J(6 |
7

n=1,3,5... , m=0,1,2,3,...
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Some simplification is possible with the use of Equations (60) and
(61) and by noting that when the logarithmic term is written as a
series its terms can be combined with the series that follows.

After some algebra, it is found that

,G= 4 ;[ n sin nax-2
P L3k n.m (m+1)[ nﬂ) -l'm\i'2 ] (nzt)2 (68)
n=1,35.. , m=1,2,3...

The parameter T , defined by Equation (61) is also expressible as

a function of Poisson's Ratio in the fully hardened material

- $[=2] (69)

and Go can be eliminated from the leading coefficient of Equation
(68) in favor of Poisson's Ratio. The parameter B was defined in
the thermal solution to be \>2(R/E)(Hﬁ9c) , while the dimensionless
coefficient of thermal expansion O has been defined as Q'E/R .

When these substitutions are made into Equation (68) it can be written

l+p, ® o
o= 60 () (D) 2 [P — L E S
n m (m+l) [m+(§—) ] (nn) (70)
n=1,3,5... , m= 1,2,3...

In this form, the equation for the parallel residual stress component

lends itself most readily to computation and physical interpretation.
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Discussion of Results

The problem of determining the stress history and the
resulting distribution of residual stresses in a material which has
hardened in the course of an exothermic reaction has been shown to
require the simultaneous consideration of several factors. These
include the temperature distribution which results from the chemical
generation of heat, as well as the constitutive equations of a
material whose properties vary with the degree of hardening, and
hence vary with time. To obtain the desired results, a unique
formulation of the constitutive equations based upon strain-energy
considerations has been introduced. In the application of these
equations to chemical hardening, it was assumed that the bulk
modulus K is constant, and that solidification is the result of
change in the shear modulus from zero fo its final value in the
fully hardened state. These assumptions, which make the mathematicai
solution tractable, are also acceptable from a physical point of view.

Consequent to the application of these considerations to the
hardening of an infinite slab within rigid mold surfaces, equations
have been obtained which define the time history of the stress com-
ponent normal to the wall surfaces and the residual stress distribution
parallel to the wall surfaces.

The history of the normal stress component as a function of
dimengionless time is given by Equation (55). It is immediately
seen from the solution that the normal stress is compressive, is
independent of the spatial location within the wall, and that it
decays to zero at infinite time when the material is fully hardened.

The latter observation also leads to the physically interesting con-
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clusion that there is no pressure between the cast material and the

mold surfaces in the fully hardened state. Hence the state of stress
within the casting is unaffected when the mold is finally removed.

A set of representative curves obtained from Equation (55) for the time
distribution of the dimensionless normal stress ratio o/Ka'(Hﬂ?c) with
different values of the reaction rate parameter \’2 are shown in Fig. 1.

The equations stress component parallel to the mold surfaces
contain integrals which have been evaluated in series form only for
infini’e time. The residual stress parallel to the mold surfaces has
been presented in Equation (70). Iike the normal stress component, it
is also seen to be proportional to the product of the bulk modulus, the
coefficient of thermal expansion, and the maximum temperature rise (H/éc) .
However, unlike the normal stress, its residual distribution does not
vanish, but remains as a function of space, Poisson's Ratio, and the
reaction rate parameter in a complex manner. Its behavior will be
investigated numerically.

Since the properties of bulk modulus, coefficient of thermal expansion,
and the maximum temperature rise associated with the hardening reaction vary
widely among different materials, the graphs which follow have been
generalized by the use of the dimensionless stress coordinate o/Ka'(H%Qc) .
The results may therefore be interpreted for and are applicable to all
materials. Our previous study of the temperature distributions arising
in exothermic reactions has indicated that the significant range for the
reaction rate parameter \)2 is from about unity to five hundred. Poisson's
Ratio Mo of course depends upon the properties of the fully hardened
material. It may vary from near zero to one-half. The computed results

cover this range of material behavior.



Fig. 2 through Fig. 5 show the distribution of the residuel

stress component parallel to its boundaries in a half section of the

slab, for different values of Poisson's Ratio and the reaction rate
parameter. DPositive values of stress are tensile and are drawn above
the zero stress axis, while stresses below the axis are compressive.
In general, the state of stress parallel to the wall surface is seen to
be compressive at the mold surface, but changes to a tensile stress in
the interior of the slab. A reduction in Poisson's Ratio is seen to
increase the magnitude of the residual stress.

The influence of the reaction rate parameter is striking and
physically significant. As \)2 increases, the compressive stress at
the mold surface also rises. At the same time, the region of compressive
stress becomes confined to an increasingly smaller region at the surface
of the slab, while the interior is in a state of tension parallel to the
surface. The tensile stress in the interior at first rises to a maximum,
with increasing values of ~,2 and subsequently decreases. For very large
values of the reaction rate parameter, associated with very rapid hardening,
the tensile stress becomes constant over a large part of the interior of
the slab. Thus, depending upon specific design requirements, such distri-
butions of residual stress can be significant, favorably or unfavorably.
Especially for large values of the reaction rate parameter, the results
seem to be similar to that induced in tempered glass in order to strengthen
the surface against cracking, even though the procedure for obtaining the

desired result may not be the same as the process currently under examination.

Summary and Conclusions

A method has been formulated for determining the thermal stress

distribution which results when a material, initially liquid-like, is
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poured into a mold and hardens in the course of an exothermic chemical
reaction. The method incorporates a thermoelastic constitutive law which
relates stress rates to strain rates, and treats the hardening material

as a two-component mixture whose composition varies with the degree of
reaction. The resulting constitutive equations have been chosen such that
the mixture behaves as an isotropic homogeneous elastic medium, whose
properties result from the proportions of the two components, and whose
stress-strain equations are derivable from a strain-energy density
function.

The method has been applied to the determination of residual
stresses in a slab cast within a rigid mold. Results show that the stress
component normal to the mold surfaces vanishes in the fully hardened
material. The stress component parallel to the mold surfaces does not
vanish, and is proportional in magnitude to the bulk modulus of the fully
solidified material, the coefficient of thermal expansion, and the maximum
rise in temperature which would be induced in the material by an impulsive
liberation of the heat of reaction. In addition, the parallel stress
component has been found to vary in a complex manner with the Poisson Ratio
of the fully hardened material and the dimensionless reaction rate.

The parallel stress component is compressive at the wall surfaces
and tensile in the central region of the slab. It increases in magnitude
inversely with Poisson's Ratio. The tensile stress at the center of the
slab is small for very small and very large values of the reaction rate
parameter, and reaches a maximum at some intermediate rate of hardening.
The stress at the mold surfaces is consistently compressive, and increases

in magnitude with the speed of the reaction. In addition, when hardening

29.



occurs répidly, the compressive stresses become confined to the surface

regions of the wall.

Concluding Remarks

Even though details of the present analysis were confined to a
discussion of the molding of a slab of uniform thickness, a technological
process of significant importance, broader implications of the results

obtained do exist and will be discussed in later publications.
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Figure 2

Variation of the Residual Stress Component
Parallel to the Slab Surface
with Dimensionless Distance from Surface
for Several Values of Poisson's Ratio
Reaction Rate Parameter ¥ 2 = 1,00
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Figure 3

Variation of the Residual Stress Component
Parallel to the Slab Surface
with Dimensionless Distance from Surface
for Several Values of Poisgson's Ratio
Reaction Rate Parameter ¥ 2 = 5,00
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Figure 4

Variation of the Residual Stress Component
Parallel to the Slab Surface
with Dimensionless Distance from Surface
for Several Values of Pbissog's Ratio
Reaction Rate Parameter ¥ ~ = 50,00
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Figure 5

Variation of the Residual Stress Component
Parallel to the Slat Surface
with Dimensioniess Distance from Surface
for Several Values of Poisgon’s Ratio
Reaction Rate Parameter ¥ ~— = 500.00
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